NOTATION

s, total surface of the thermoelectric element; s, s,, surfaces of the cold and hot contacts, respectively;
Z, thermoelectric element surface outside the contacts; v, volume of the thermoelectric element; u, electric
potential; uy, u,, potentials of the cold and hot contacts; i current density vector; v, A, electrical conductivity
and thermal conductivity; &, absolute thermal emf; z = ¢ %/A; T, absolute temperature; Ty, T, temperatures
of the cold and hot contacts; T', temperature at an arbitrary point on the thermoelectric element with no cur-
rent and at Ty = Ty; T", temperature at an arbitrary point on the thermoelectric element with current T =
Ty; ¢ =T—=—Ty; & =T'—Ty; 4" = T"—T; Vz, Laplace operator; V, Hamiltonian operator; g = —AVT, conduc-
tion heat-transfer vector; qF, = —AVTqF = —AVT", QFp heat conduction through contact surfaces with
no current; Qg, total power of internal Joule heat sources; ¢, fraction of the total power of the internal sources
transferred by heat conduction to the surface syat Ty = T(; 4 =p* + eu + eaT; u*, chemical potential; e,

carriercharge /= E{ i-ds., electric current;s , equipotential surface;Q s, = a TOI, Peltier heat absorbed on

acold contact; Q Isy = a'TyI, Peltier heat generated at a hot contact; &, form factor; Q,, heat removed from
cold source; Qq, heat supplied to hot source.
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GENERALIZED STATIC VOLT—AMPERE CHARACTERISTICS

OF THERMORESISTORS
I. Z. Okun' UDC 536.531
Similarity criteria are obtained for static volt—ampere characteristics of thermoresistors and
for thermoresistors included in a circuit. A technique is described for a simplified graphic-
analytical design of a circuit with a thermoresistor and rules are given for modeling thermo-

resistors where the dissipation coefficient varies.

1. Similarity Criteria for Static Volt—Ampere

Thermoresistor Characteristics

We begin with the assumption that the temperature T is constant over the entire volume of the thermo-
resistor, which is approximately true [1, 2] when

Bi1 1
(Bi is the Biot number).

We can write the heat-balance equation for a thermoresistor, relating the current i and the voltage u on
it with the environment temperature T, and the dissipation coefficient H:
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u?

Ry

ui = ={*Ry = H(T — T\ (2)

In general, we can write the following expressions for the quantities Ry and H:

T
RT:ROFR(E‘):ROFR(G)' @

T
H = HFxn (__; : -_Be) — HF (0, 8, )

where Ry and H; are constants, having the dimensions of resistance and dissipation coefficients, respectively;
B is a constant, having the dimensions of temperature; ®=T/B and @, = Te/B are normalized values of the
thermoresistor and environment temperature; and Fg and ¥y are functions of the dimensionless argument @,
giving R and H as a function of thermoresistor temperature (H depends, in addition, on the temperature Tg
of the surrounding environment and, therefore, on the parameter @,).

The methods of similarity and dimensional analysis are applicable only when the conditions
Fr(8) = idem, (5)
Fy(®, 8,) = idem (6)

hold for the volt—ampere characteristics being considered.

Condition (6) can be considered to hold in most cases (although approximately), since, first, the dissipa-
tion coefficient of thermoresistors depends only slightly on the temperatures T and Te, and when these vary,
e.g., in a range on the order of 100°C, H varies only by some tens of percent [1-3]; secondly, the dependence
H = {(T, Tg) is qualitatively the same for different types of thermoresistors (the quantity H increases both
with increase of excess temperature AT = T—T, of the thermoresistor relative to the environment at a given
value of T, and with increase of the environment temperature Te for a given excess temperature AT).

In contrast with H, the thermoresistor resistance R can vary by a factor of several tens and even a
hundred with change of temperature T over a range on the order of 100°C (e.g., for thermoresistors with a
critical temperature [4, 5]), and the law can be different (compare, e.g., the posistor and the ordinary
thermoresistor). Therefore, it is very important that condition (5) hold for similarity of the volt—ampere
characteristics being compared, and this is true for thermoresistors of a single type and sometimes even for
entire classes of thermoresistor [e. g., for thermoresistors FR(®) = exp(1/®) = idem].

Assuming that conditions (5) and (6) hold, it is easy to obtain the following expression for the current i
and the voltage u on the thermoresistor from Eq. (2):

2 Fu(®, 8 (0—8e)

= =F, (O, 6), 7

BH, Fz(®) 16, €e) “
R,
u?

=Fr(®)Fu(®, 8) (0 —89 =F,(©, 8. 8

BHR, ROVFul o) ( A ( e 8)

We now introduce the following normalized dimensionless quantities: the voltage U on the thermoresistor,
the current i flowing through it, and the resistance Ry :

- u u 5 i i = Rr RT
U= — =, == ——t Ry = = )
m, V BHR, m, l/' BH, T mg R, ®
R,
Here
m, =VBHR,, m, =1/ BHo, mp=R, (10)

R,
are assumed to be the measurement scales of voltage, current, and resistance, respectively.

It follows from Eqgs. (7) and (8) that the normalized dimensionless volt—ampere characteristics of
"homogeneous" thermoresistors [in the sense of conditions (5) and (6)] are a family of curves dependent only
on a single parameter — the normalized environment temperature ®, — and for them the similarity param-
eter is
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17 = F(-":’ 93" (11)

This result was obtained in [6-8] for a particular case [H = const, Rp = A exp(B/T)].

Here we note particularly that it was assumed in the derivation [see Eq. (3)] that the thermoresistor
resistance as a whole is determined by the temperature T and does not depend on other factors (this provision
is not satisfied, e.g., by posistors, whose resistance also depends on the applied voltage, and this gives rise
to the so-called "varistor effect" {4]).

2., Similarity Parameters for Thermoresistors

Included in an Electrical Circuit

We consider an arbiprary circuit consisting of a voltage source, linear resistances, and a single thermo-
resistor, The current i flowing through the thermoresistor is

Ueq
L)
Ry 4-1eq

where the voltage ugq and the resistance req can be determined from the equivalent generator theorem [9].

L=

(12)

Substituting Eq. (12) into Eq. (2), and performing some simple transformations using Eqgs. (3) and (4),
we obtain
Fr (8, Bg) (B — 8,
Fr(©)

[Fr(©) +?eq F= l—ézq , (13)

where ﬁeq and Tgq are the normalized dimensionless voltage ugq (ﬁeq = Ueq/myy) and resistance req (feq =
req/mR). It follows from Eq. (13) that the normalized thermoresistor temperatures and, thersfore, their
resistances Fp(®) are given by the three dimensionless parameters

= teq z Teq e 14
u = T = s 9 - ( )
ST VBER, © T R B

instead of the six original dimensional parameters: Ry, B, Hy, Te, Ugq> and req. These three parameters
also determine the normalized currents i through the thermoresistor and the voltages u across if, as follows

from Eq. (12), which can be converted to the form

7= __z‘.es___
F R (@) + 7 eq

It follows from the above, in particular, that a change in the heat-transfer conditions (in the dissipation
coefficient Hy) of the thermoresistor can be modeled by a change in the supply voltage u,. Here we assume
that the temperature dependence of the dissipation coefficient Fiy(®, ©¢) remains the same and that condition
(1) holds.

In fact, in a change of dissipation coefficient from H;, to a new value Hy,, only the parameters ueq:
ﬁeqz = ﬁéqiw/ H017H02 change. However, the new value of the parameter ﬁeq2 can be obtained even for an un-
changed quantity Hy = Hy, = const by a change in the circuit supply voltage uy:uy; = u01VH017H02 (since ﬁeq is
directly proportional to uy). Thus, an increase in the dissipation coefficient H; by a factor of m is equivalent
to a decrease by a factor of vm in the circuit supply voltage; the normalized current i and voltage U on the
thermoresistor are the same in the two cases.

We now convert from the normalized quantities u and i to the ordinary dimensional values u and i. In
the caseof variation in H, the voltage u and the current i (for given values of U and 1) depend on H, as follows
[see Eq. (9)]:

— e - H,
u=uVBHR,, i =i I/BRO .
0

In the case of variations in u, the absolute values of u and i do not depend on u, when the normalized values

u and1 are given. Taking into account this difference, we can finally formulate a rule for modeling variations
in the conditions of heat transfer from thermoresistors: "An increase (or decrease) in the dissipation coef-
ficient of thermoresistors by a factor of m can be modeled by a decrease (or an increase) by a factor of vm

in the supply voltage; here the currents and voltages measured in the modeling must be increased (or decreased)
by a factor of vm, correspondingly.”
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3. Simplified Graphic-Analytical Circuit Design Procedure

with a Thermoresistor under Static Conditions

We now consider the most varied class of thermoresistors — thermistors whose resistance Ry varies
with temperature according to the law

B B
Rr =Raex (—--—> {15
T e CXp T T )
When the environment temperature T, varies over several tens of degrees, and when the thermoresistor
excess temperature relative to the environment is on the same order, the dissipation coefficient H of the
thermoresistor may be constant, to a first approximation [3]:

H = H, ~ const. (16)
We now consider the new variable
=B _ B 1m
Te T

in place of the thermistor temperature T. The excess temperature relative to the environment is then equal
to

BT Te 72 %

T—Te=—p5_—7 ~Te=F "o

(18)

Using Egs. (15)-(18), we can transform thermoresistor heat-balance equation (2) into the following form:

u? X
= exp(—x (19)
BRIE  1—6ex P
B

or

=2

1~ - X
H,Ta 1 — Qex

exp x. (20)

We consider the normalized dimensionless voltage u over the thermoresistor and the normalized current i
flowing through it:

- . i

b=, = = (21

u

T
Te ote T 9
*V ~& *V Br:

Here

/HORE l/ HO
M=TV 5> M=T|/ Br; @2
have been adopted as the voltage and current measurement scales, respectively.

The normalized dimensionless volt—ampere thermistor characteristics are thus given parametrically

by the following equations:
7= __* X, = X * 23
“‘l/l—-eexe"p( 2) l/l-—eex exp 5 - (23)

We shall show that with the above normalization, the dimensionless volt—ampere thermoresistor characteris—
tics are practically independent of the environment temperature over a range of several tens of degrees [only

the scales M, and M;, into which the quantities T, and Re = {(Ty) enter, depend on the environment tempera-
ture Tel.

In fact, it follows from Eq. (23) that for a variation in the environment temperature Tg over a range
= AT about its mean value Tg, the relative variation in the normalized voltage and current values Ai/d and
Ai/i, for a given value of x = In (RT/ Rg) do not exceed the quantity vy, equal to

X AT e

~ (24)
2(1—06x) B

Y
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(here ©; = T¢/B). For an environment temperature change in the range 2ATg = 100°C, and for a thermistor
excess temperature relative fo the environment on the same order

x —1, AT, ~10-®
2(1—8.x) B
and thus the relative displacement vy of the normalized volt—ampere characteristic along the path Rt = u/1 =
const (x = const) for an environment temperature change within the above range does not exceed a few percent,

From this we can derive the following technique for graphic-analytic design of circuits with thermo-
resistors:

1) Weconstruct a normalized volt—ampere thermistor characteristic u=Fd, ®;), corresponding to
the average environment temperature 7 in the range of change;

2) using the equivalent generator theorem we calculate the voltage Ugq and the resistance req;

3) for the given specific values of environment temperature T and dissipation coefficient H,, we cal-
culate the thermoresistor resistance Rg = f(Tg), the measurement scales for voltage My , and the normalized
values of voltage Ugq = Ueq/M,, and resistance I‘eq = req/MR (MR = My/M;j = Re is the resistance measure-
ment scale);

4) we draw the loadline “eq eq’ determine the point A where it intersectsthe normahzed volt—ampere
characteristic, and the thermoresistor resistance at this point (first the normalized value R A= us/i, A and
then the ordinary dimensional value RA = RABe) Knowing Ry, it is easy to determine the desired values of
circuit current and voltage using the well-known relations for linear circuits.

Thus, in this design method, only the loadline is altered, and not the thermoresistor voli—ampere
characteristic when the environment temperature T, and the dissipation coefficient H, vary.

4, Thermoresistor Volt—Ampere Characteristics at

an Extreme Point

The temperature Ty, at an extreme point of the thermoresistor volt—ampere characteristic is given by

the well-known expression
B 4%
Tm—T(l—\/l— B )

1
m_ - 1—46 (25)
B 2 —Vi—46).
The volt—ampere characteristics of thermistors have a voltage maximum only for ®, < 0.25. Expanding the
expression under the square root sign in Eq. (25) in a series in terms of 48,, we easxly obtain the following
relations for the normalized values of thermoresistor excess temperature and power dissipation at the extreme

point:

or

AO, =0, — 6 = 62(1 + 20,4 50+ 1401 +.. ), (26)
P, =H, (T,—Te)= BH, A8, = BH,0}(1+26+ 56; + 1403 ... 27)
(Hpy, is the dissipation coefficient in the vicinity of the extreme point).

In practice, in most cases ®g = 0.04-0.15 (B ~ 3000-6000°K, T¢ = 250-450°K), and the series in Eqgs.
(26)-(27) converge rapidly.

Having found the quantities A®,, and P, and using the corresponding series expansions in terms of
the parameter 8¢, we can easily calculate Ry, Uy, and Ip,:

T, A© Re 2 19 3 )
im — (1 = 1—6,— —@c —— 0B ) 28
Reexp( Tw ) = Rgexp [ (l e ﬂ . ( 5 ry (28)
Y n /HmBRe . Op 5 o 53 53 \ 29
Um—VPmRm—_eel/ - (1TT+*§-63+ zge!“!f"')' (29)
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(Eq. (29) for Uy, was obtained in [10]),
P . /eH,B{ K = 3 .29 . 487 5 }
7 2
In=1/ Tz :eel/ R"e (\, 5O~ g GG ) (30)

Equations (27)-(30) can be approximated by the following expressions:

P~ BH, e%(l - 2_;_:%"-8&) , (31)
Rm_~;»- ( TZT;?@iE) (32)
Umzeel/ nRe ( _;.—1:?—35—(5:) ’ (33)
@e]/ £ (1 “‘3”' 1-2@7e‘59e) ‘ (34)

For a change in the parameter ®¢ = To/B in the range 0 = @ = 0.2, the error in using Eq. (33) does not
exceed 0.2%, and when using Eqs. (31), (32), and (34), the error does not exceed 1%, in comparison with the
exact values of Py, Ry, Uy, and Iy, '

From the above relations (33) and (34) we can obtain a simple analytical expression for calculating the
voltage Uy gq corresponding to the onset of a relay effect in the thermoresistor arm, for 0 = req < lrgl:

~ fBHmRa 1 93 req .3 @e |
UICQ*-Umfreq,m'—eel/ *7—— l‘i“é‘ 156 - & Re (lfﬂ‘———‘——*) (35)

It can be shown that the differential resistance at the knee point is
3—1

rg o — ——}_‘—/_—g:——l-— (1-—-—3@e) exp (—— Vg)- (36)

Relation (35) can be used to design devices which use the relay effect in a circuit with a thermoresistor, The
error in calculating Uy gq using Eq. (35) with 0.03 = @4 < 0.25 does not exceed ~ 2%.

NOTATION

T, Te, temperatures of thermoresistor and the surrounding environment; Ry, Rg, thermoresistor
resistances at temperatures T and Te; u, voltage over the thermoresistor; i, current through the thermoresistor;
Ty, thermoresistor temperature correspondingtoan extreme point; @m, ®¢, normalized dimensionless values of
temperatures Ty, and Te; X, auxiliary variable; u, ¢, ET, normalized values of voltage, current, and resis-
tance; my (My), mj (Mi)’ mp, My, measurement scales for voltage, current, resistance, and power; Ueg»

Teq values of voltage and resistance determining the current through the circuit branch containing the
thermoresistor; Um, Im, Rm, Pp,» Vvoltage over the thermoresistor, current through it, thermoresistor
resistance, and power generated in the thermoresistor, corresponding to the extreme point of the volt—ampere
characteristic; ry, differential thermoresistor resistance at the knee point of the volt—ampere characteristic;
v, relative displacement of the volt—ampere characteristic along the path R T = const; Ur g, the voltage ugy
corresponding to the onset of the relay effect in a circuit with a thermoresistor,
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MOLECULAR-KINETIC GENERALIZATION OF THE
HEAT-TRANSFER EQUATION

V. L. Kolpashchikov and A. A, Baranov UDC 533.72

Starting from microscopic theory, the authors generalize the heat-conduction equation to the
case where the gradients in molecular transport velocities vary appreciably over a mean free
path. :

To obtain a hydrodynamic description of a rarefied gas as a continuous medium one usually begins from
the Boltzmann equations and uses the method of successive approximations to derive the equations of an ideal
compressible fluid, the Navier—Stokes equations, the Barnett equations and the super-Barnett equations. How-
ever, in the work of Predvoditelev [1, 2] and Truesdell [3, 4] it was noted that equations of higher order than the
Navier—Stokes equations still give a poor description of the behavior of a rarefied gas (at least no better than
the Navier—Stokes equations). Several different approaches from this basis have been suggested. For ex-
ample, in the work of Vallander [5, 6] a method was suggested for generalizing the Boltzmann equation, with
subsequent transition to equations of hydrodynamic type. Several modifications of the Navier—Stokes equations
have been proposed by Ladyzhenskaya [7].

Predvoditelev [1] generalized the Navier—Stokes hydrodynamic equations, using the Maxwell method [8]
and starting from the molecular-kinetic basis of the hydrodynamic equations. The Maxwell approach to
deriving the equations of motion of a viscous fluid from the kinetic theory of gases, in contrast with the method
of deriving the hydrodynamic equations from the Boltzmann equations, as developed in the work of Enskog
and Chapman [9], does not require knowledge of the distribution function and is based on the following assump-
tion.

The transport velocities of the two colliding molecules are equal; this means that a continuum in motion
has a filamentary structure, i.e., the minimum dimensions of the jets correspond to the mean distance
between molecules. The first to give attention to the possibility of generalizing this hypothesis was Pred-
voditelev [1], who stressed that the physical situation corresponding to Maxwell's hypothesis will not hold for
motion of a continuum at large enough speed near a wall or when vortices are generated. In addition, the
breakdown of the Maxwell hypothesis that the molecular transport speeds are equal will be evident in motion
of a rarefied gas, when the flow dimensions are comparable with the average distance between molecules.
The Predvoditelev hypothesis was further developed in regard to generalization of the equations of hydro-
dynamics in the work of Bubnov [10, 11].

In the present paper the concept of work [1] is used to derive a generalized heat-conduction equation for
a rarefied gas, when the gradients of the transport speeds vary appreciably over a molecular mean free path,

1. Derivation of the Basic Equation

To derive a generalized heat-conduction equation we begin from the energy equation, obtained from
microscopic theory [12]:

D 7]
p._l— T —

U, d - = —
3 2_}_22__ 3 3+ 2
Dt F™ p(E +En® 807 2 p(n® -+ En® + %)
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